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Abstract

We describe a multilevel multiscale mimetic (M3) method for solving two-phase flow (water and oil) in a heterogeneous
reservoir. The governing equations are the elliptic equation for the reservoir pressure and the hyperbolic equation for the
water saturation. On each time step, we first solve the pressure equation and then use the computed flux in an explicit
upwind finite volume method to update the saturation. To reduce the computational cost, the pressure equation is solved
on a much coarser grid than the saturation equation. The coarse-grid pressure discretization captures the influence of mul-
tiple scales via the subgrid modeling technique for single-phase flow recently proposed in [Yu. A. Kuznetsov. Mixed finite
element method for diffusion equations on polygonal meshes with mixed cells. J. Numer. Math., 14 (4) (2006) 305–315;
V. Gvozdev. discretization of the diffusion and Maxwell equations on polyhedral meshes. Technical Report Ph.D. Thesis,
University of Houston, 2007; Yu. Kuznetsov. Mixed finite element methods on polyhedral meshes for diffusion equations,
in: Computational Modeling with PDEs in Science and Engineering, Springer-Verlag, Berlin, in press]. We extend signif-
icantly the applicability of this technique by developing a new robust and efficient method for estimating the flux coars-
ening parameters. Specifically, with this advance the M3 method can handle full permeability tensors and general
coarsening strategies, which may generate polygonal meshes on the coarse grid. These problem dependent coarsening
parameters also play a critical role in the interpolation of the flux, and hence, in the advection of saturation for two-phase
flow. Numerical experiments for two-phase flow in highly heterogeneous permeability fields, including layer 68 of the SPE
Tenth Comparative Solution Project, demonstrate that the M3 method retains good accuracy for high coarsening factors in
both directions, up to 64 for the considered models. Moreover, we demonstrate that with a simple and efficient temporal
updating strategy for the coarsening parameters, we achieve accuracy comparable to the fine-scale solution, but at a frac-
tion of the cost.
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1. Introduction

The ever increasing power of computers combined with the growing sophistication of numerical algorithms
and visualization tools is driving the demand for quantitative simulations of multiscale phenomena. Typical
multiscale applications include, contaminant flow in aquifers, enhanced oil recovery, power generation in fis-
sion reactors, and reacting flows in catalyst beds. Here, the term multiscale is intended to convey two impor-
tant properties of these applications. First, the processes being modeled involve disparate length and time
scales. Second, the fine-scale spatial structure and temporal coupling strongly influences coarse-scale proper-
ties of the solution, such as average flow rate through an aquifer. Thus, a naive simulation that does not
address the influence of the fine-scales is terribly inaccurate, even for coarse-scale properties of the solution,
while a fully resolved simulation is computationally intractable.

Thus, the goal of multiscale modeling is to develop methods that balance the competing demands of accuracy
and efficiency. Specifically, we are interested in methods that not only capture the influence of fine or unresolved
scales, but provide a methodology that facilitates achieving the desired accuracy in the computation of specific
quantities of interest with the least possible computational work. Ultimately, these methods need to include
error estimation and error control throughout the simulation, but this is beyond the scope of this research.

In modeling single and two-phase flow in porous media, the strongest multiscale influence arises from the
heterogeneous structure of the subsurface environment. It is well understood that employing simple averages
of the fine-scale parameters in a model of the same form has significant limitations. In particular, only a few
heterogeneous structures are such that the coarse-scale flow under a uniform coarse-scale gradient is described
by the same mathematical model with an equivalent or upscaled permeability. In general, a rigorous treatment
of the fine-scale structure introduces a full tensor permeability, as well as additional closure or non-local terms
in the coarse-scale model. For example, even in two-scale periodic media, classical homogenization using
asymptotic expansions leads to a full tensor permeability for the coarse-scale model, even if the fine-scale per-
meability was a scalar [4,20]. Thus, upscaling the fine-scale model, not just its parameters, is a fundamental
challenge in modeling multiscale phenomena.

Recently, research in multiscale methods has focused on this more rigorous approach by upscaling flow
models through the creation of multiscale basis functions. Although these concepts have appeared in various
forms in a number of applications, such as the shape functions in reactor physics [31], and Generalized Finite
Element Methods for conductivity in composite materials [3,27], they were introduced to the subsurface flow
modeling community through the Galerkin multiscale finite element method (MsFEM) [18]. In this method
multiscale basis functions are created on each coarse-scale cell by solving local flow problems for the pressure.
Using these basis functions in the weak form of the pressure equation to create a coarse-scale discretization
captures the influence of the fine-scale structure directly, and in particular, this discretization is an upscaled
model, not simply a model with upscaled parameters. However, this approach does not generate locally con-
servative velocity fields, which is desirable for two-phase and multiphase flow calculations.

To address this problem researchers turned to the first-order form of the bulk flow equations (i.e. writing
mass conservation and Darcy’s law as a first order system). Hence, using a control volume finite element
method (CVFEM) or a mixed finite element method (MFEM) to discretize the fine-scale model explicitly
enforces local mass conservation. Moreover this approach provided a natural setting to develop multiscale
methods that explicitly enforce local mass conservation. For example, the initial work of Chen and Hou [9]
introduced the mixed multiscale FEM (MMsFEM), which used local problems to develop multiscale basis
functions for the velocity field. A modified version of this method was developed by Aarnes [1] to treat wells
and to provide a locally conservative flux on both the fine and coarse scales. In addition, Efendiev et al. [14]
introduced a Multiscale finite volume element method (MsFVEM) for two-phase flow calculations.

In all of these methods, the accuracy of the solution depends critically on the accuracy of the local boundary
conditions that are used to create the multiscale basis functions. This motivates various approaches to capture
the influence of the heterogeneous structure, such as local oscillatory conditions or oversampling [18], as well as
special source and boundary functions for near-well regions [1]. However, for channelized flows arising from per-
meability fields with long correlation lengths, an effective local approach may not be possible and global flow
information may be needed. For example, in [14] a highly accurate fine-scale global solution at the initial time
is used to construct the boundary conditions for the MsFEVM basis functions. Similarly, in [2] a global solution
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at the initial time is used to define the local boundary conditions throughout a two-phase flow simulation. In both
cases the robustness and accuracy was improved significantly with the use of this global information.

However, this rigid distinction between local and global is largely an artifact of the convenient but artificial
partitioning of scales into resolved and unresolved, or fine-scale and coarse-scale. Specifically, this domain-
decomposition style partitioning is what places the demands on these boundary conditions, because as the
coarsening factor increases these artificial internal boundary conditions become increasingly important. In
fact, most upscaling methods achieve a coarsening factor of approximately 10 in each coordinate direction,
while the trends in fine-scale realizations of large reservoirs requires a coarsening factor of 100 or more.

These observations motivate our interest in developing truly multilevel methods that build on the success of
robust variational multigrid methods. Here the issue of efficiently generating a hierarchy of coarse-scale mod-
els that accurately captures the influence of the fine-scale structure is handled through a minimization princi-
ple. Given a fine-scale discrete operator, a coarse-grid, and an interpolation operator, the coarse-scale
operator that minimizes the error in the range of the interpolation is readily obtained. This is dubbed the var-
iational or Galerkin coarse-grid operator, and it is the workhorse of robust multigrid solvers such as Black
Box Multigrid (BoxMG) [11,12], Algebraic Multigrid (AMG) [28,29], and Smoothed Aggregation based
AMG [30,5]. This procedure does not simply average coefficients, but upscales the discrete model algebraically
in a manner that captures the low energy modes of the fine-scale operator. The accuracy and efficiency of this
coarsening procedure was demonstrated in the Multilevel Upscaling (MLUPS) method introduced by Mac-
Lachlan and Moulton [24] for single-phase steady-state flow. In particular, it was demonstrated that even
for highly heterogeneous permeability fields with long correlation lengths accuracy comparable to MsFEM
[18] could be obtained much more efficiently. However, like MsFEM this method does not produce locally
conservative velocity fields. While regaining locally conservative fields through postprocessing is of interest,
here we consider another approach with greater flexibility in terms of the underlying discretization.

In this work we develop a new multilevel multiscale mimetic (M3) method for finite difference discretiza-
tions of the first order system for pressure and bulk fluid velocity. This approach uses the subgrid modeling
technique for single-phase flow recently proposed in [23,17,22]. We extend significantly the applicability of this
technique by developing a new robust and efficient method for estimating the flux coarsening parameters. Spe-
cifically, with this advance, the M3 method can handle full permeability tensors and general coarsening strat-
egies, which may generate polygonal meshes on the coarse grid. The M3 method is readily extended to
polyhedral meshes by leveraging recent developments in mimetic finite difference (MFD) methods [8,7].

In this subgrid modeling technique the accurate approximation of the flux coarsening parameters is critical
for applications involving highly heterogeneous media or unstructured and distorted meshes. For example,
using the solution of local problems to approximate these parameters [17,1,2] is not sufficiently accurate for
channelized flows. Moreover, the cost of solving local problems for every macro-edge may approach or exceed
the cost of performing a global solve on the fine grid. The novel technique that we propose for estimating the
flux coarsening parameters is based on an approximate and inexpensive solution of this flow problem. To
compute this approximate solution, we apply a small number of AMG cycles (many less than required for solv-
ing the fine-grid flow problem) to the equivalent symmetric positive definite system for the Lagrange multipli-
ers. As noted earlier, a robust variational multigrid algorithm efficiently captures the effects of the fine-scale
structure on the flow, and hence, quickly provides accurate estimates of the problem dependent flux coarsen-
ing parameters. By design, the structure of the coarse-scale system is identical to the original fine-scale system,
hence we can apply the coarsening procedure recursively to obtain a multilevel algorithm. This algorithm is
very flexible with a number of free parameters, including the number of coarse levels, the coarsening factor
for each level, and the accuracy of the flux coarsening. Numerical experiments show that the cost of the mul-
tigrid cycles is a negligible part of the overall simulation cost.

The paper is organized as follows. In Section 2, we introduce a continuum model of two-phase flow in por-
ous media, along with its mimetic finite difference (MFD) discretization. The new multilevel multiscale method
for upscaling the pressure equation, which combines the novel subgrid-modeling technique proposed in
[23,17,22] and a new AMG based methodology for computing the flux coarsening parameters, is developed
in Section 3. Section 4 presents an algorithm for simulating two-phase flow that uses the IMPES (IMplicit
Pressure, Explicit Saturation) scheme with the new multilevel multiscale method for pressure. A discussion
of the computational complexity is presented as well. Numerical results of two-phase flow through highly
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heterogeneous media are presented in Section 5. Finally, in Section 6 we present conclusions and directions for
future work.
2. Problem formulation

2.1. Continuum model

We consider immiscible two-phase flow in a two-dimensional porous medium, X [10]. The effects of gravity,
compressibility, and capillary pressure are neglected. The two immiscible phases will be referred to as oil and
water, and will be denoted with the subscripts o and w, respectively. The governing equations are given by
/
oSj

ot
þr �~uj ¼ �qj; j ¼ o;w; ð2:1Þ
where Sj and~uj are the saturation and the velocity of phase j, respectively, and the porosity, /, is to be con-
stant. We assume that the two phases fill the pore volume completely so that the saturation satisfies the
constraint
So þ Sw ¼ 1:
The source and sink terms, which represent injection and production wells, are denoted by qj. The velocity of
each phase is given by a generalized form of Darcy’s law
~uj ¼ �
krjðSjÞ

lj
K rp; ð2:2Þ
where K is a symmetric and uniformly positive definite permeability tensor, krj is the relative permeability of
phase j, and lj is its viscosity. The relative permeability krj depends on saturation in such a way that the per-
meability of one phase is reduced by the presence of other. The total, or bulk fluid, velocity is defined by
~u ¼~uw þ~uo:
The phase mobility kjðSjÞ and the total mobility kðSwÞ are defined as follows:
kjðSjÞ ¼
krjðSjÞ

lj
and kðSwÞ ¼ koð1� SwÞ þ kwðSwÞ: ð2:3Þ
Let us introduce the Buckley–Leverett fractional flow functions
fwðSwÞ ¼
kwðSwÞ
kðSwÞ

and f oðSwÞ ¼
koð1� SwÞ

kðSwÞ
:

Then, combining the governing Eqs. (2.1) with Darcy’s law (2.2), we obtain the pressure equation,
r � ðkðSwÞ K rpÞ ¼ qo þ qw ð2:4Þ

and the saturation equations
/
oSj

ot
þr � ðfj~uÞ ¼ �qj; j ¼ o;w: ð2:5Þ
Since the saturations Sj sum to one, we use water saturation and pressure as the primary variables of the mod-
el. We will refer to the equations presented above as the fine-scale model. In order to close this model, bound-
ary and initial conditions must be imposed. We consider no-flow (Neumann) boundary conditions and
homogeneous, Sw ¼ const, initial condition for water saturation.

2.2. Discretization of the fine-scale model

In this section we define a fine-scale discretization of equations (2.4) and (2.5). Let Xh be a polygonal par-
tition of the domain X that is referred to as the fine-grid (or fine-scale) partition
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Xh ¼
[N
i¼1

ei:
In this paper we use the mimetic finite difference (MFD) method [8] to discretize the pressure equation. How-
ever, the multiscale method proposed in the next section may be adopted easily to other mixed methods, such
as the mixed finite element (MFE) [6] and control volume finite element (CVFE) [15] methods.

For each cell ei, we define one pressure unknown, pi, which represents the integral average of p. Let p be the
vector of all pressure unknowns. For each edge ‘j of polygon ei, we define one unknown, ui;‘j , which represents
the average normal flux ~u �~n (a scalar) through this edge. Hereafter, we will refer to ui;‘j as simply the flux
unknown. Let u be the vector of flux unknowns. The size of u is the number of boundary edges plus twice
the number of internal edges. When two cells ei and ek share a common edge ‘, the following continuity con-
dition holds
ui;‘ ¼ �uk;‘: ð2:6Þ

We use the IMPES approach (IMplicit Pressure and Explicit Saturation) to discretize Eqs. (2.4) and (2.5) in

time. First, the pressure equation is solved. Second, the hyperbolic saturation equation is integrated explicitly
using the single-point upwind finite volume method [16,25].

Thus, the MFD discretization of the pressure equation may be written in the form,
MðSnÞ BT CT

B 0 0

C 0 0

264
375 un

pn

kn

264
375 ¼ 0

qn

0

264
375; ð2:7Þ
where n denotes the time step, MðSnÞ is the mass matrix computed using the saturation from the current time
step, matrix B represents the divergence operator multiplied by the matrix of polygon areas, matrix C repre-
sents continuity of the normal flux across mesh edges (2.6), kn is the vector of Lagrange multipliers, and qn is
the source term. Due to scaling of the divergence operator, components of qn are integrals over fine-grid poly-
gons of the source and sink function qo þ qw.

A saddle-point matrix with the same structure appears in the hybrid MFE method. The weak form of the
velocity continuity condition (the last equation in (2.7) or equivalently (2.6)) naturally gives rise to an efficient
solution algorithm. Specifically, the mass matrix is block-diagonal with as many blocks as there are cells in Xh;
therefore, velocity and pressure unknowns can be easily eliminated, resulting in a sparse symmetric positive
definite problem for Lagrange multipliers.

3. Upscaling of the pressure equation

In a direct single-scale implementation of the IMPES algorithm, the solution of the pressure Eq. (2.7) dom-
inates the computational time. For example, in the direct fine-scale and reference solution computations in
Section 5, approximately 90% of the computational time is spent in solving for the pressure. The objective
of the proposed method, and of multiscale methods in general, is to mitigate this cost by solving the pressure
equation on a much coarser grid. In this section we describe a robust multilevel technique for generating this
coarse-grid system. For simplicity, we omit the time superscript from (2.7). The method is truly multilevel and
produces locally conservative coarse-grid velocities.

We begin by describing a two-level coarsening method, a building block for the multilevel method. Let
N 0 ¼ N , cN 1 � N 0, with 0 < c < 1, and
XH ¼
[N1

i¼1

Ei; Ei ¼
[

k2FðEiÞ
ek;
where FðEiÞ is a set of indices of fine-grid cells and Ei is a macro-cell (a polygon). Let jF ðEiÞj be the cardinal
number of set FðEiÞ, i ¼ 1; . . . ;N 1. We assume that the coarse-grid partition XH is non-overlapping and con-
formal, and that each edge of a macro-cell Ei is a segment of a straight line.



Fig. 1. Schematic of the two steps of the two-level upscaling method for a 2� 2 square macro-cell. The cell-centered pressure unknowns
are represented by circles, and the velocity unknowns are represented by arrows. The first step is an equivalent reduction, while the second
is approximate.
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The two-level method consists of two steps, which are illustrated in Fig. 1. First, for each macro-cell, we elim-
inate all internal velocity unknowns, and replace all internal pressure unknowns with a single pressure. This
elimination process is performed by equivalent modifications of the original system. The unknowns in the result-
ing system are shown in the middle schematic of Fig. 1. Second, we perform a conservative flux coarsening pro-
cedure that defines one flux unknown per macro-cell edge from the fine-grid fluxes on the macro-edge. The final
form of the reduced system, shown in the right schematic of Fig. 1, is identical to the original system.

3.1. Elimination of internal degrees of freedom

To eliminate the internal degrees of freedom we use the algorithm proposed by Kuznet-sov (see [23,17,22]
where this algorithm is described for the diffusion-reaction problem). Let us consider a macro-cell E formed by
np � jF ðEÞj fine-grid cells ek, k 2 FðEÞ. Let C � oE be its boundary formed by nbnd

u fine-grid edge ck. Further-
more, let nint

u be the number of internal edges of E.
Using the continuity condition (2.6), we eliminate duplicated internal fluxes and the corresponding

Lagrange multipliers. Equations for the remaining unknowns associated with the macro-cell E may be written
in the form
MCC MCi BT
C

MiC Mii BT
i

BC Bi 0

264
375 uC

ui

pi

264
375 ¼ gC � CT

CkC

gi

qi

264
375; ð3:1Þ
where ui is the vector of size nint
u of internal flux unknowns, uC is the vector of size nbnd

u of boundary flux un-
knowns, pi is the vector of size np of pressure unknowns, kC is the vector of size nbnd

u of the remaining Lagrange
multipliers, and qi is the vector of size np of source data. All the introduced vectors are parts of vectors in the
global formulation (2.7). For the fine-grid discretization, gi ¼ 0 and gC ¼ 0; however, in a multilevel frame-
work they may be non-zero in macro-cells containing sources.

By properties of the discretization method, the leading 2� 2 matrix in (3.1) is symmetric and positive def-
inite. Let us define the following Schur complement matrix:
S ¼ Bi M�1
ii BT

i : ð3:2Þ

Note that
S ¼ ST P 0 and ker S ¼ ker BT
i : ð3:3Þ
It can be shown that the null space has dimension one and that it is spanned by the vector w ¼ ð1; . . . ; 1ÞT of
size np. Let us consider the generalized eigenvalue problem
S wi ¼ mi D wi; i ¼ 1; . . . ; np;
where D is the positive definite diagonal matrix with cell areas of the diagonal
D ¼ diagfjek1
j; . . . ; jeknp

jg; ki 2 F ðEÞ:
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The reason for choosing such a diagonal matrix is explained at the end of this subsection. We assume that the
eigenvectors are D-orthonormal and m1 ¼ 0. We define the pseudo-inverse matrix, Sþ, as follows:
Sþ ¼
Xnp

i¼2

1

mi
wiw

T
i :
It is easy to verify that
SþS ¼ I� 1

a2
wwTD; a2 ¼ wTDw; ð3:4Þ
Note that system (3.1) is compatible being a part of the compatible system (2.7). Therefore, it can be solved for
ui and pi
pi ¼ SþðBC � BiM
�1
ii MiCÞuC þ g;

ui ¼ RiCuC þ n
ð3:5Þ
where
RiC ¼ �M�1
ii BT

i SþðBC � Bi M�1
ii MiCÞ �M�1

ii MiC; g ¼ �Sþ½qi � BiM
�1
ii gi� þ bw;

n ¼M�1
ii BT

i Sþ½qi � BiM
�1
ii gi� þM�1

ii gi;
and b is an arbitrary number.
Let us multiply the second two block equations in (3.1) by the matrix RT

iCD and add the result to the first
block equation. Note that
ðBC þ RT
iCBT

i Þpi ¼
1

a2
BT

CwwTDpi � bBC pE;
where pE is the coarse-grid pressure unknown given by
pE ¼
1

a2
wTDpi ¼

P
k2FðEÞpkjekjP

k2FðEÞjekj
:

This formula is physically sound (pE is the integral average of fine-grid pressure unknowns) and explains the
definition of the pseudo-inverse matrix given in Eq. (3.4). Now, we multiply the last block equation in (3.1) by
wT and use property (3.3). The reduced system may be written in a matrix form:
cMCC

bBT
CbBC 0

" #
uC

pE

� �
¼ bgC � CT

CkC

qE

" #
; ð3:6Þ
where
cMCC ¼ I RT
iC

� � MCC MT
iC

MiC Mii

" #
I

RiC

� �

and
 bgC ¼ gC �MT

iCnþ RT
iCðgi �MiinÞ; qE ¼ wTqi:
3.2. Conservative flux coarsening

After elimination of internal fluxes and reduction to a single pressure, we obtain a discretization with several
flux unknowns per macro-edge (see the second picture in Fig. 1). To obtain a discretization with only one flux
unknown per macro-edge, we closely follow the approach proposed by Y. Kuznetsov and described in [17], and
then introduce our new methodology for approximating the flux coarsening parameters in Section 3.3.

Let L denote a macro-edge of a macro-cell E. By assumption, L is a segment of a straight line. First, we
consider the case in which L consists of two fine-grid edges ‘1 and ‘2 (see Fig. 2). Let u1 and u2 be the fluxes



Fig. 2. Macro-cell and its edge L (left) consisting of two fine-grid edges ‘1 and ‘2.
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corresponding to ‘1 and ‘2, respectively. Without loss of generality, we assume that ju1j 6 ju2j. The goal of the
coarsening procedure is to define the flux U L through the macro-cell edge L in terms of the fine-grid fluxes.
Mass conservation dictates that
U Lðj‘1j þ j‘2jÞ ¼ u1j‘1j þ u2j‘2j; ð3:7Þ

where j‘ij denotes the length of edge ‘i.

Let a be the ratio of fine-grid fluxes
a ¼
u1

u2
; u2 6¼ 0;

1; otherwise:

�
ð3:8Þ
This ratio characterizes the first moment of the flux, and will play an essential role in our algorithm. In Section
3.3.1, we show that using the exact ratio leads to an optimal coarse-grid system in the sense that it reproduces
fine-scale quantities exactly. However, this calculation is equivalent to solving the fine-scale system, and hence,
it is not a practical multiscale method. We introduce new method for approximating the flux ratios, a, in Sec-
tion 3.3.2 and show its robustness and efficiency in Section 5 with numerical experiments for challenging test
problems. Here, we suppose that a is given. Then, condition (3.7) gives
u1 ¼
aðj‘1j þ j‘2jÞ
aj‘1j þ j‘2j

U L and u2 ¼
j‘1j þ j‘2j
aj‘1j þ j‘2j

U L:
In other words, a defines the 2� 1 interpolation matrix QL such that
u1

u2

� �
¼ QLUL: ð3:9Þ
If the coarse-grid edge L consists of m fine-grid edges, we have m� 1 coarsening parameters ai, i ¼ 1; . . . ;m� 1.
For simplicity we assume again that the fine-grid fluxes satisfy juij � juiþ1j. Then,
ai ¼
ui

uiþ1
; uiþ1 6¼ 0;

1; otherwise:

(

Using the same arguments as above, we derive that
ui ¼
rð1Þi

rð2Þi

Xm

j¼1

j‘jjU L; ð3:10Þ
where rð1Þm ¼ 1,
rð1Þi ¼
Ym�1

j¼i

aj; i � n� 1; and rð2Þi ¼ j‘mj þ
Xm�1

j¼1

j‘jj
Ym�1

k¼j

ak:
Formula (3.10) defines the interpolation matrix QL in this case.
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Remark 3.1. Expression (3.10) can be simplified if we introduce m parameters b1; . . . ; bm such that aj ¼
bj=bjþ1. Then
ui ¼
bi

Pn
j¼1j‘jjPn

j¼1bjj‘jj
UL: ð3:11Þ
Let QE be the interpolation matrix for the macro-cell E that is assembled from the edge-based matrices QL.
Then, given coarse-grid fluxes buC, we may calculate the fine-grid fluxes by
uC ¼ QEuc
C:
Substituting this expression in (3.6), and multiplying the first equation by QT
E , we obtain the coarse-grid dis-

cretization for the macro-cell E
ME BT
E

BE 0

" #
uc

C

pE

� �
¼ QT

EbgC � CEl

qE

" #
; ð3:12Þ
where
ME ¼ QT
E
cMCCQE; BE ¼ bBCQE; CE ¼ diagfjL1j; . . . ; jLmjg;
and
l ¼ C�1
E QT

ECCk:
The coarse-grid discretization (3.12) is illustrated in the right schematic of Fig. 1. The structure and scaling of
matrix CE has been designed to match the structure and scaling of matrix CC in (3.1). The global coarse-grid
system is obtained by assembling the elemental systems (3.12) for all macro-cells, and is closed by adding flux
continuity conditions similar to (2.6). After solving the coarse-grid system, we obtain a vector uc of coarse-grid
fluxes and a vector pc of coarse-grid pressures pE. The fine-grid velocities needed for the transport equation are
calculated using first the interpolation operators QE and then formula (3.5). Moreover, since this global
coarse-grid problem has exactly the same sparsity structure as the fine-grid problem (2.7), the multi-level meth-
od may be constructed by recursion.
3.3. Flux coarsening parameters

In the M3 method the accuracy of the flux coarsening parameters directly influences the overall accuracy of
the flow calculation, and particularly, the advection of saturation. Specifically, the coarse-grid pressure solve
preserves mass locally and provides the zeroth order moment or average flux through each macro-edge. The
flux coarsening parameters characterize the distribution, or first moment, of the flux along the macro-edge,
and hence, significantly impact the accuracy of interpolation of the flux to the fine-grid.

Although standard approaches in parameter upscaling and in the generation of multiscale basis functions
could be used to approximate the flux coarsening parameters, the limitations of these methods, which were
highlighted in the introduction, are naturally present in this sub-grid modeling technique as well. Thus, to
address these limitations in a robust and efficient manner we introduce a novel approach in Section 3.3.2 that
is motivated by the important observation formulated in Lemma 3.1.

3.3.1. Exact flux coarsening

In this subsection we assume that the exact flux ratio, aex, is known for each macro-edge in the coarse-grid.
We prove that the fluxes obtained by the multiscale method are exactly the fine-grid fluxes. For this proof it is
sufficient to analyze the two-level method.

Lemma 3.1. Let aex be the exact flux ratio for each macro-edge corresponding to the solution of (2.7) on the fine

grid. Then interpolation of coarse-scale fluxes, obtained by the solving Eqs. (3.12) on the coarse-grid, yields

exactly the fine-grid fluxes.
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Proof 1. Without loss of generality, we consider a macro-edge L consisting of two fine-grid edges ‘1 and ‘2. Let
u1 and u2 be the fine-grid fluxes corresponding to these edges. Using (3.7), we define the restriction operator
RL,
RL
u1

u2

� �
¼ j‘1ju1 þ j‘2ju2

j‘1j þ j‘2j
¼ U L;
where UL is the flux through macro-edge L. Using the interpolation operator QL defined in (3.9), we write the
following equation for the interpolation error
e1

e2

� �
¼

u1

u2

� �
�QL RL

u1

u2

� �
:

A straightforward calculation shows that
e1 ¼ ðu1 � aexu2Þ
j‘2j

aexj‘1j þ j‘2j
and e2 ¼ ðaexu2 � u1Þ

j‘1j
aexj‘1j þ j‘2j

:

Since aex ¼ u1=u2, then e1 ¼ e2 ¼ 0. Thus vector ðu1; u2ÞT is the eigenvector of the matrix QLRL which corre-
sponds to eigenvalue k ¼ 1.

The global interpolation and restriction matrices are block diagonal with as many blocks as there are
coarse-grid edges, therefore the interpolation of coarse-grid fluxes coincides with the fine-grid fluxes on all
fine-grid edges. This proves the assertion of the lemma. h

This lemma proves that if the exact flux ratios, aex, are known for a specific problem, then the second step in
the scheme shown in Fig. 1 is an equivalent reduction as well as the first step.

3.3.2. Flux coarsening with algebraic multigrid

The overarching goal of this research is to develop a multilevel algorithm that provides a flexible hierarchi-
cal approach to balancing the competing demands of efficiency and accuracy. This is particularly important
for problems with highly heterogeneous permeability fields that lack scale separation or have long correlation
lengths, as these are not effectively treated with local approximation methods [14]. Indeed, it is critical that
global information be incorporated in an efficient and hierarchical manner that does not require a highly accu-
rate solution of the fine-scale pressure equation.

We propose to define the coarsening parameters a from an approximate solution of (2.7) calculated with an
efficient multigrid method.

Algorithm 1. New method for calculating flux coarsening parameters

1: Form the Schur complement of system (2.7) for the Lagrange multipliers, k.
2: Perform a few preconditioned conjugate gradient (PCG) iterations with a single V(1,1)-cycle of the

Ruge-Stüben algebraic multigrid [26,28] as the preconditioner, until a weak convergence tolerance
er is reached.

3: Calculate fluxes from elemental systems (3.1) and the flux coarsening parameters a from (3.8).

For problems involving the second-order form of the pressure equation, the algebraic multigrid method
(AMG) is known to be a good candidate. In particular, AMG uses the fine-scale discrete model to create a
hierarchy of coarse-scale models through a variational principle that minimizes the error in the range of
the interpolation. This methodology is critical to the robustness of AMG for problems with discontinuous
and tensor permeabilities. Moreover, this is a very efficient way to incorporate tightly coupled scales ranging
from the cell size to the domain size. Note that a robust multigrid method that deals directly with the saddle
point problem (2.7) does not exist; therefore Step 1 is required. The Schur complement matrix is symmetric and
positive definite. It is formed element-by-element ensuring the linear complexity of this algorithm.

The AMG method provides optimal algorithmic scaling with respect to mesh resolution, and achieves a
typical convergence rate of 0.1–0.3 for the permeability fields considered in Section 5. The conjugate gradient
method is used to accelerate convergence of the AMG method. In the numerical experiments, we use a small
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number of PCG iterations, typically 3–5, to solve the Lagrange multiplier system to a relative residual toler-
ance er, in the L2 norm. In following discussions the accuracy of the coarsening parameters a will be described
by the convergence criteria er.

Although the multilevel formulation that we presented above defines key components that could be used in
a multilevel solution algorithm for the saddle point problem, there are still many unresolved issues, such as
smoothers, that are beyond the scope of this article.

4. Two-phase flow simulation

4.1. The M3 method

In this implementation of the multilevel multiscale mimetic (M3) method for two-phase flow we use the
IMPES time discretization scheme (IMplicit Pressure and Explicit Saturation). As noted in the previous
section, the solution of the pressure equation is the most computationally demanding part of each time-
integration step. To solve it more efficiently, we use the new multilevel method described in the previous
section. Having solved the pressure equation on the coarsest grid, we interpolate the fluxes onto the
fine-scale mesh and use them to update the saturation explicitly. By construction this interpolation is
conservative.

The accuracy of the multiscale solution depends on the various facets of the M3 method that impact how
accurately a approximates aex (Section 3.3.1) throughout the simulation. For example, the exact flux ratio aex

varies with time, and hence, updating a in time will improve the overall accuracy of the multiscale solution. In
fact, updating a at each time-step to high precision is equivalent to solving the fine-grid problem. However, in
many multiscale methods, such as the MsMFEM [2], MsFVEM [14], and Multiscale Finite Volume (MsFV)
[19] method, the fine-grid pressure equation is solved to high precision only once, at the initial time step. Then,
the corresponding multiscale basis functions are used throughout the entire simulation. Although we imple-
ment this approach for comparison purposes (see Section 5.1.1), we are more interested in the gains in overall
efficiency offered by occasional, computationally inexpensive corrections of a. These gains in efficiency are pos-
sible because of our multigrid approximation technique (see Section 3.3.2), which is not only computationally
efficient, due to the fast multigrid convergence, but provides estimates that include valuable information about
global flow behavior.

Another important facet of the M3 method is the coarsening strategy. Specifically, in a multilevel algorithm
the coarsening factor between levels, as well as the total coarsening factor, affects the trade-off between accu-
racy and efficiency. In the numerical examples, we consider rectangular meshes and generally coarsen uni-
formly in each coordinate. Hence, using cl to denote the coarsening factor between levels l and lþ 1 in
each coordinate, we may describe a coarsening strategy in a hierarchy of L levels with the compact notation
c1 : c2 : � � � : cL�1. Moreover, the total coarsening factor in each coordinate may be written
cT ¼
YL�1

l¼1

cl
while the total coarsening factor is simply CT ¼ c2
T . For example, a two-level method with c1 ¼ 4, and a three-

level method with c1 : c2 ¼ 2 : 2, both have a total coarsening factor of CT ¼ 16. However, as we will see in the
next subsection, the computational cost of forming the coarse-scale pressure system favors hierarchies that use
coarsening factors of two.

These facets of the M3 method are summarized in the following list:

– the coarsening strategy and the total coarsening factor (see Section 5.1.1);
– the total number and frequency of flux ratio updates (see Section 5.1.2);
– the convergence tolerance, er, of the PCG(AMG) iteration used to determine the flux ratios (see 5.1.2).

The role of the corresponding parameters are highlighted in pseudo-code description below, Algorithm 2.
In the numerical tests, we investigate the impact of these parameters on the quality of the multiscale solution.
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Algorithm 2. The M3 method for two-phase flow

1: Estimate parameters a using Algorithm 1 (see Section 3.3.2) with a convergence tolerance er.
2: Set the number of levels L, and the coarsening factors c1 : c2 : � � � : cL�1.
3: Form hierarchy of coarse-scale discretizations of the pressure Eq. (3.12).
4: While tn < T f do
5: if ( update of parameter a is scheduled) then
6: compute new parameters a using Algorithm 1 with the convergence tolerance er.
7: else
8: use the parameters a from the previous time step
9: end if

10: Update coarse-scale discretizations using the criteria described in Section 5.1.3 and the upscaling
algorithm described in Section 3.

11: Solve the pressure equation on the coarsest level.
12: for L;L� 1; . . . ; 2 do
13: Interpolate fluxes from level l to level l� 1 using formulas (3.9), (3.5).
14: end for
15: Define time step Dtn using the saturation based criterion [10, Section 7.3]].
16: Update the saturation.
17: n nþ 1; tn  tn�1 þ Dtn.
18: end while

4.2. Computational complexity

The most computationally demanding part of the M3 method is derivation of matrices M�1
ii and Sþ in (3.2)–

(3.5). To analyze the method complexity, we consider rectangular meshes and neglect all algorithmic opera-
tions except matrix inversions. Let us assume that the coarsening factors in each direction are cl ¼ 2k. Then,
each macro-cell consists of ncðkÞ ¼ 22k sub-cells and has niðkÞ ¼ 2kþ1ð2k � 1Þ internal edges. Matrices M�1

ii and
Sþ have sizes niðkÞ and ncðkÞ, respectively. Recall that inversion of a dense symmetric matrix of size n requires
Oðn3Þ arithmetic operations. These inversions are independent of each other and can be easily parallelized.

If we perform L� 1 levels of coarsening with the factor 2k on each level, the total number of numerical
operations Noper per a coarsest macro-cell is
N oper �
XL�1

l¼1

N cðlÞðn3
c þ n3

i Þ ¼
XL�1

l¼1

22kðL�lÞð26k þ 2ð3kþ3Þð2k � 1Þ3Þ;
where NcðlÞ ¼ 22kðL�1�lÞ is the number of macro-cells on the l-th level.
Now we fix the total coarsening factor. Note that one level of coarsening with the factor 2k corresponds to

two levels of coarsening with the factor 2k=2 or to four levels of coarsening with the factor 2k=4 and so on.
The estimation of Noper for different numbers of coarsening levels shown in Fig. 3 demonstrates that the

coarsening strategy based on the factor 2 in each direction is the most efficient from computational point
of view. In this case M�1

ii and Sþ are symmetric 4� 4 matrices. A similar conclusion regarding memory savings
can be made. The multilevel strategy based on the coarsening factor 2 in each direction requires much less
memory.

5. Numerical results

To demonstrate the effectiveness of the proposed multiscale method, we consider two models of the perme-
ability. In both models the permeability field is assumed to be a highly heterogeneous scalar function constant
on each fine-grid cell. The first model uses realizations of layered media generated using the GSLIB software
package [13]. The second model is taken from the Tenth SPE Comparative Solution Project. Specifically, we
used the two-dimensional field defined by layer 68 of the three-dimensional reservoir in model 2. As noted in
[21], this is a fluvial layer that provides a challenging test for multiscale methods.



Fig. 3. Log of a computational work requires to generate local matrices for a macro-cell consisting of 16� 16 fine-scale cells as a function
of a number of coarsening levels (L� 1) and a coarsening factor on each level (2k in each direction).
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We have three research goals. First, we analyze different coarsening strategies and different total coarsening
factors (Sections 5.1.1 and 5.2). Second, we analyze how frequency of updates of the coarsening parameters a’s
impacts solution accuracy (Sections 5.1.1 and 5.2). Third, we analyze how solution accuracy is affected by
accuracy of a’s (Section 5.1.1).

To complete the definition of the two-phase flow model given in Section 2, we define the relative permeabil-
ity curves as
krwðSÞ ¼ ðS	Þ2; kroðSÞ ¼ ð1� S	Þ2; S	 ¼ S � Swc

1� Swc � Sor

; ð5:1Þ
where Swc is the critical saturation, and Sor is the residual saturation. We set Swc ¼ Sor ¼ 0:1. In addition, the
initial saturation is set to a constant, Sðt ¼ 0Þ ¼ Swc ¼ 0:1; the phase viscosities are lw ¼ 1 and lo ¼ 4; and the
porosity of the medium is assumed to be constant, / ¼ 0:2. For all simulations we use no-flow boundary con-
ditions. The flow is driven by source and sink terms, which are considered as injector and producer wells with
constant rates. The time is expressed in PVI (pore volume injected) units, which is a common practice in res-
ervoir simulations.

To estimate the accuracy of the multiscale solution obtained using the proposed M3 method (Algorithm 2),
we define a reference solution. The reference solution is computed by forming the MFD discretization (Section
2.2) on a mesh that is twice finer, in each direction, than the fine-grid. We also define a fine-scale (or fine-grid)
solution which uses the MFD discretization on the fine-grid. For both the fine-scale and reference solutions
the pressure equation is solved with PCG to a tolerance of er ¼ 10�8, and the IMPES time discretization
approach is used to advance saturation. The PCG solver is preconditioned with a single V(1,1) cycle of stan-
dard Ruge-Stüben AMG [28] per iteration, and hereafter, will be referred to as PCG(AMG).

We focus our investigation of accuracy on three quantities that are important in two-phase flow simula-
tions: water-cut, saturation in the production wells, and the breakthrough time. The relative error in the sat-
uration at the production wells, dSðtÞ, is defined as follows:
dSðtÞ ¼
jSrðtÞ � SðtÞj

SrðtÞ
; ð5:2Þ
where SrðtÞ denotes the reference saturation. For strongly heterogeneous permeability fields, the reference solu-

tion may be much closer to the continuum solution than the fine-grid solution. Therefore, using it in (5.2) results
in a more reliable estimate of the simulation error.

We also choose several macro-edges in the domain and monitor the behavior of the flux ratios on these
edges as functions of time. In particular, we study how well the computed flux ratio a approximates the exact
aex. In addition, we study how different parameters of the M3 method affect the quantities of interest.
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5.1. GSLIB model

The fine grid is a 128� 128 uniform partition of a square domain X ¼ ½0; 1000 m�2. We consider two het-
erogeneity scenarios for the permeability field generated such that the log10ðKÞ is normally distributed with
mean zero and variance four. The correlation lengths along the principle axes of statistical anisotropy are
0.8 and 0.04, leading to a strongly layered structure with a dynamic range of approximately 6 orders of mag-
nitude. The average direction of high permeability layers is vertical in Scenario 1 and is rotated by 45� clock-
wise in Scenario 2 (see Fig. 4). Both scenarios represent structures that are difficult to upscale. The source is
located at the south-west corner of X and the sink is in the north-east corner (see Fig. 5).

5.1.1. Simulations with fixed coarsening parameters a’s

The goal of the first group of experiments is to demonstrate that the accuracy of the M3 method decreases
very modestly with the number of levels, L. This is important because using smaller coarsening factors, and
hence more levels, improves the efficiency of the method (see Section 4.2). Here we consider three coarsening
Fig. 4. Two permeability fields generated by the GSLIB package: Scenario 1 (left) and Scenario 2 (right).

D

C

B

A

Fig. 5. Locations of the injector (�) and production (
) wells and four monitored macro-edges A, B, C, and D.
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strategies with a total coarsening factor of 8, and a 16� 16 coarsest mesh. Specifically we consider a two-level
method, c1 ¼ 8, a three-level method, c1 : c2 ¼ 4 : 2, and a four-level method, c1 : c2 : c3 ¼ 2 : 2 : 2.

At the initial time the fine-scale system (2.7) is solved with PCG(AMG) to a tolerance er ¼ 10�8. This solu-
tion is used to determine the flux ratio a for each macro-edge. The flux ratio is fixed for the rest of the sim-
ulation. The water-cut curves and relative errors of saturation in the producer well are shown in Fig. 6.

The full scale water-cut curves shown in Fig. 6(a1) and (a2), are in excellent agreement with the reference
solution for all three coarsening strategies. However, differences are apparent in the zoomed water cuts shown
in Fig. 6(b1) and (b2), and in dSðtÞ shown in Fig. 6(c1) and (c2). Specifically, the water cut for Scenario 1 (ver-
tical streaks) shows that as the number of coarsening levels increases, the breakthrough time decreases. More-
over, for all coarsening strategies the shape of the water cut is very similar to the fine-scale solution, while the
reference solution has even earlier but less abrupt breakthrough. In the simulation of Scenario 2 (streaks at
45�), the water cut for different coarsening strategies is still in excellent agreement with the fine-scale solution.
However, once again, the reference solution exhibits an earlier breakthrough than the fine-scale solution. Nev-
ertheless, the difference in the breakthrough time between any of these coarsening strategies and the fine-grid
solution is less than the difference in the breakthrough time between the fine-grid solution and the reference
solution. This indicates that new M3 method has captured the multiscale nature of the fine-grid model very
well, while the fine-grid model has not fully resolved the continuum model.

Similarly, the relative error in the saturation, dSðtÞ is plotted in Fig. 6(c1) and (c2), and shows that over the
majority of the simulation the error is less than 2%. Note that the large peaks in dSðtÞ are due to small errors in
the breakthrough times. By definition (5.2) values of these peaks are bounded by 8.

In the next group of tests, we demonstrate that even with a large total coarsening factor, we obtain reason-
able accuracy in the multiscale solution. Specifically, we consider from four to seven levels, with ci ¼ 2 on each
level. This produces a total coarsening factor that varies from 8 to 64, in each direction. The coarsening
parameters, a, are determined as in the first group of tests; to a high tolerance, only at the initial time. From
the viewpoint of computational efficiency, there is no need to use more than four to six levels for such small
two-dimensional problems. However, the experiments demonstrate that the M3 method produces a reasonable
solution even for a rather extreme total coarsening factor, and this may be necessary in real large-scale models.

The water-cut curves and relative errors of saturation in the producer wells are shown in Fig. 7. Here the
full scale water-cut curves, (a1) and (a2), are in good agreement with the reference solutions. In contrast to the
previous tests, discrepancies are noticeable in these plots for both scenarios with the 2� 2 coarsest mesh, and
for Scenario 2 with the 4� 4 coarsest mesh. The zoomed water cuts shown in Fig. 7(b1) and (b2) indicate that
the overall trend of earlier breakthrough with increased coarsening has continued. However, there are inter-
esting differences in the performance for these scenarios, particularly for the coarsening strategy with a 2� 2
coarsest mesh. First, with Scenario 1 (vertical layers), the overall shape of the water-cut is well approximated,
despite its early breakthrough. In contrast, for Scenario 2 the breakthrough is not significantly earlier than
with the other coarsening strategies, and is in fact later than the reference solution. However, the shape of
the water-cut is more complex, and is not tracked well beyond approximately 0.5 PVI.

This problem is apparent in the plots of dSðtÞ shown in Fig. 7 as well. Specifically, we see that for Scenario 1
the error is well below 5% for most of the simulation, while for Scenario 2, despite achieving a good estimate
of the breakthrough time, dSðtÞ � 10% for 0.2–0.4 PVI time range. Thus, in order for the M3 method to
achieve the desired robustness and accuracy with a large total coarsening factor and over a broad class of
problems, the temporal dependence of the coarsening parameters must be addressed.

5.1.2. Simulations with updated coarsening parameters a’s
In the previous section, the coarsening parameters a were computed very accurately but only once, at the

initial time step. In this section, we propose to perform a similar amount of the computational work but to
distribute it more uniformly across the whole simulation. More precisely, instead of solving the fine-scale
problem very accurately (er ¼ 10�8) at the initial time step, we solve it approximately (er ¼ 10�1 � 10�2) several
times during the simulation. This approach provides a flexible strategy for controlling the accuracy of a’s and,
in turn, the accuracy of the multilevel solution.

The total computational work required to compute the a’s depends on the frequency of the updates and the
convergence tolerance, er. The convergence rate of the PCG(AMG) iteration is bounded well below one



Fig. 6. Comparison of three coarsening strategies for Scenario 1 (left column) and Scenario 2 (right column): water-cut curves (a1, a2),
zoom of water-cut curves near the breakthrough time (b1, b2), and relative saturation error dSðtÞ in the producer well (c1, c2).
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Fig. 8. The flux ratios for the fine-scale solution and the multilevel solutions with flux-ratio updates on macro-edges A, B, C, and D. Left
column corresponds to Scenario 1, Right column corresponds to Scenario 2.
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the 0.2–0.4 PVI time range. In addition, we see that solution with updates tracks the water cut much more clo-
sely, than the solution without updates. The differences for Scenario 1 are less pronounced but still apparent in
the left column of Fig. 9. Most important, the multiscale solutions generated with er ¼ 0:1 and er ¼ 0:01 are
virtually indistinguishable. Thus, the design of the M3 method, along with the robust AMG preconditioner
underpinning the solver, allows a weak convergence tolerance to be used. Moreover, after the initial time there
is some level of error in the saturation. Consequently, even if a is updated with er ¼ 10�8, the result would differ
from those associated with the fine-scale solution.

In Fig. 10 we set er ¼ 0:1, which corresponds to approximately 3 PCG(AMG) iterations, and consider sev-
eral different levels of coarsening. Although, improvements in the solution are obtained for all coarsening
strategies, it is apparent these updates increase in importance with the number of levels. Specifically, in Sce-
nario 2 the temporal updates drive the water cut of the multiscale solutions back toward the fine-scale solu-
tion. The magnitude of these temporal bumps increases with the coarsening level, suggesting that we should
consider increasing the frequency of these updates in conjunction with more extreme coarsening.

5.1.3. Adaptive calculation of subgrid matrices

The computational complexity of the M3 method was analyzed in Section 4.2 and focused on the construc-
tion of the matrices M�1

ii and Sþ for the macro-cells. These matrices depend on the geometry of the fine-scale
cells, the media properties (total mobility and absolute permeability tensor), and the coarsening parameters.
Fig. 10. Dependence on the number of coarsening levels. The flux ratios are updated every 0.15 PVI. The residual convergence factor is
e ¼ 0:1 (3 PCG iterations). The top row shows water-cuts for Scenario 1 (left) and Scenario 2 (right). The bottom row shows the relative
saturation error in the producer well.
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Since, the geometry and the absolute permeability tensor are assumed to be constant in time, temporal adap-
tation of the M3 method is focused on the total mobility and the coarsening parameters. The coarsening
parameters are updated very infrequently, approximately every 5000 time steps in the previous GSLIB Scenar-
ios (Section 5.1.2). At these isolated time steps, all matrices are recomputed. Therefore, the total mobility is the
primary parameter that facilitates adaptive computations of local matrices.

The total mobility varies in time and space; however, it changes significantly in the vicinity of a sharp water
front. The essential idea of the adaptive approach is to update local matrices only for those macro-cells where
a change of the total mobility is relatively large. We implemented the update criteria proposed in [19]. Specif-
ically we use the condition
1

1þ ek
<

kn

kn�1
< 1þ ek; ð5:3Þ
where kn is total mobility at time steps tn and ek is a user-defined threshold. If this condition fails for any sub-
cell of a particular macro-cell then the corresponding local matrices are updated.

Thus, the smaller ek, the larger the number of matrices that will be updated. This rule is implemented on all
levels of the hierarchy.

Numerical experiments with the M3 method suggest that if ek � 0:1, then the adaptive strategy does not
introduce significant errors in the multiscale solution. These results are consistent with the results presented
in [19]. Furthermore, with ek ¼ 0:1 a significant savings in computational work is achieved. To characterize
this savings, let T pr and T tr be the times required to solve the pressure and transport equations, respectively,
in computing the fine-scale solution. For the problems described in this section,
T pr � 5T tr:
Next, let T ms be the time required to solve the pressure equation with the M3 method using four levels and
c1 : c2 : c3 ¼ 2 : 2 : 2. Note that due to the small size of the fine-scale model, increasing the number of levels
further does not significantly reduce the cost of the pressure solve. The numerical tests show that
T pr � 2:5T ms:
The effectiveness of the adaptive strategy depends on the time step. For larger time steps, the mobility changes
more significantly and hence the larger the number of local matrices that must be updated. In our experiments,
the adaptive strategy speeds up the pressure solver approximately 20 times with respect to the full multiscale
algorithm
T pr � 2:5T ms � 50T adp;
where T adp is the time required to solve the pressure equation with the adaptive M3 method. For larger prob-
lems the speed up is even larger.

In general, the time required to update the coarsening parameters a should be considered as well. However,
in our experiments these updates are very infrequent, and as a result, have no appreciable impact on the total
simulation time.

5.2. SPE 10th model

In this section, we consider a more realistic model from the upscaling benchmark tests in the Tenth SPE
Comparative Solution project. Here, we focus on layer 68 of the three-dimensional reservoir. The absolute
permeability field is shown in Fig. 11, where the high permeability channels of this fluvial layer are clearly vis-
ible. The dynamic range of the absolute permeability is approximately 6 orders of magnitude, as it was for the
GSLIB examples.

We consider the classic five-spot well configuration with the injector in the middle of the domain and the
producer wells at the corners (see Fig. 11). The fine-scale geological model is a Cartesian grid with 60� 220
cells, and the two-phase flow parameters are defined at the beginning of Section 5. We assume that the rates of
the injector and producer wells are constant, with each producer accounting for one quarter of the injected
fluid. Although, this assumption is not physically realistic, it allows us to evaluate the new multiscale method



Fig. 11. the left picture shows the permeability field of the layer 68 in the SPE 10th model. the right picture shows locations of the injector
well (�) and producer wells A, B, C, and D (
). The monitored macro-edges (�) are located at points E, F, G, and H.

6748 K. Lipnikov et al. / Journal of Computational Physics 227 (2008) 6727–6753
without the additional complication of well modeling, which is beyond the scope of this paper. Moreover, the
algebraic nature of the M3 method provides a natural mechanism to incorporate different well models, and this
will be explored in the future.

In the first group of tests, as in Section 5.1.1, we demonstrate that the M3 method produces reasonably
accurate solutions even with a large total coarsening factor and many levels. Specifically, we consider the total
coarsening factors 8, 16, and 32 in each direction, which correspond to methods with 4, 5, and 6 levels, respec-
tively. In fact, in the case of 6 levels, the coarsest mesh in the M3 method is 2� 7 macro-cells. This is approx-
imately a factor of 3 coarser in each direction than most upscaling studies of this SPE benchmark. We note,
that since the fine-grid dimensions are not powers two, rectangular macro-cells are introduced as needed along
the boundaries. The coarsening parameters, a, are determined as in Section 5.1.1; to a high tolerance, only at
the initial time.

The full scale water-cut curves for the four producer wells are shown in Fig. 12. Overall the water-cut
obtained with the different coarsening strategies is in good agreement with the fine-scale solution. However,
small visible discrepancies suggest similarities with the previous GSLIB based Scenario 2 case (45� layering).
Specifically, the water-cuts for producers A, B, and C have noticeable temporal structure. Once again, since
the spatial structure of the highly permeable flow channels is not aligned with the grid, the single-point upwind
advection scheme is stressed. Moreover, the larger total coarsening factor is the less accurate multiscale solu-
tion is obtained. Together these factors produce a noticeable drift and damping of the temporal structure,
which is most apparent in the six level multiscale solution.

To highlight these features of the multiscale solution, Fig. 13 shows zoomed relative errors of saturation at
producer A, which has the largest dSðtÞ, and producer D, which has the most uniform and smallest dSðtÞ. As
expected, the errors increase modestly with the number of levels, but are most pronounced shortly after break-
through in producer A. In fact, for the six-level case, the breakthrough time is well approximated, yet the rel-
ative error in saturation is approximately 10% in the 0.1 PVI following breakthrough, and slowly drops below
to less than 5% around 0.3 PVI. Thus, to achieve the desired accuracy and robustness we must address the
temporal dependence of the coarsening parameters.

It is important to note that, in general, the multiscale solution cannot be uniformly more accurate than the
fine-scale solution over the entire domain and throughout the entire simulation time. However, localized
anomalies will naturally arise through the fortuitous cancellation of errors. For example, for producer A,



Fig. 12. Water-cut curves for total coarsening factors 8, 16, and 32 at producers A (top-left), B (top-right), C (bottom-left), and D
(bottom-right).

Fig. 13. Relative error of saturation at producer A (largest relative error) and at producer D (smallest relative error) for total coarsening
factors 8, 16, and 32.
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between approximately 0.3 and 1.2 PVI the multiscale solutions based on 4 and 5 levels appear to be more
accurate than the fine-scale solution. While errors elsewhere, at producer D for example, increase modestly
and monotonically with the number of levels.



6750 K. Lipnikov et al. / Journal of Computational Physics 227 (2008) 6727–6753
To reduce the errors and improve robustness, particularly for the simulations with the large total coarsen-
ing factors, we update the coarsening parameters in time. We focus this study on the six-level case, with a total
coarsening factor of 32. As in Section 5.1.2 we use the simple strategy of uniform updates in time, and study
the performance of the M3 method with 10, 20, 50 and 100 updates. This corresponds to very infrequent
updates of the coarsening parameters, approximately ranging from every 5000 to every 500 time steps. The
convergence tolerance, e ¼ 0:01 is used and corresponds to approximately 5 PCG(AMG) iterations per
update.

The relative error in saturation for producers A and D with different numbers of updates, are shown in
Fig. 14. The general trend is as expected, the more frequent the updates of a, the more reliably the multiscale
solution approximates the fine-scale solution. A problem area worth noting is the relative error in saturation at
producer A in the first 0.1 PVI after breakthrough. Here, 10 updates does not have a significant impact on the
error, but 20 updates reduces the peak error (at about 0.18PVI) down below 10%. With 100 updates not only
this peak is reduced but the multiscale solution exhibits a nearly uniform error of approximately 5%, which is
comparable to the fine-scale solution. Moreover, the error at later times is converging to the fine-scale error
with fewer anomalous regions over which the multiscale solutions appear more accurate. Similar improvements
are observed in producer D. Here, the error was well behaved even without updates, but was steadily around 5%
at later times. Once again, 10 updates does not have a significant impact in the first 0.1 PVI after breakthrough.
However, once again, with 100 updates, the error after breakthrough quickly drops below 2.5%.

To highlight further that these weak tolerance updates enable the multiscale solution to better approximate
the fine-scale solution, we plot the flux ratios for four macro-edges, E, F, G, and H of Fig. 11 in Fig. 15. First, it
is apparent that significant deviations of approximately 10% from the initial flux-ratio occur as the saturation
front passes through each macro-edge. In the case of 10 updates, only macro-edge E, which has the slowest and
smoothest evolution of a, is well approximated by these updates. For the other macro-edges, the updates gen-
erate a lagged profile that may completely step over features, such as the drop in a around 0:4PVI for macro-
edge F. As noted in the previous section, it is the error in the saturation that dominates the error in the flux
ratios, and hence, decreasing er will not improve the accuracy of the flux ratios or the multiscale solution.
Although, we note that the long time behavior is captured well even with 10 updates. Thus, it is not surprising
that we observed a marked improvement in the error in saturation at later times (Fig. 14), even with only 10
updates. However, to improve the accuracy of the multiscale solution shortly after breakthrough, it is apparent
that more frequent updates are required. In particular, the faster features are not better resolved with 20
updates (approximately every 0.1 PVI). Consequently, we did not observe a significant improvement in the
accuracy for any of the producers shortly after breakthrough (Fig. 14) using only 20 updates. In fact, 100
updates were necessary (approximately every 0.02 PVI) to drive the error in producer A below 5% for all times
after breakthrough, which is comparable to the error present in the fine-scale solution.
Fig. 14. Relative error in saturation at producer A (largest relative error) and at producer D (smallest relative error) for the different
number of updates. The coarsest mesh consists of 7� 2 macro-cells. The convergence tolerance is er ¼ 0:01.



Fig. 15. The comparison of the flux ratios obtained with different update frequencies.
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Thus, developing update strategies that adequately resolve important fine-scale temporal features is critical
to achieving a specified level of accuracy in the quantities of interest. Moreover, the overall computational
efficiency of the M3 method is maintained because a weak convergence tolerance on the PCG(AMG) algo-
rithm delivers sufficient accuracy in the coarsening parameters.

6. Conclusions

We developed a new multilevel multiscale mimetic (M3) method for the IMPES time discretization of two-
phase flow models. In this formulation, the solution of the pressure equation on each time step is the dominant
part of the simulation cost. Hence, a critical component of the M3 method is the new multilevel coarsening algo-
rithm for this equation. This algorithm brings together the recently proposed subgrid modeling algorithm with
the algebraic multigrid for accurate calculation of the flux coarsening parameters. Through a sequence of alge-
braic manipulations, this algorithm generates a hierarchy of pressure equations that all have the same form. By
design, the solution on all levels of the hierarchy is locally mass conservative independently of the accuracy of
the coarsening parameters. Thus, on each time step, we first solve the pressure equation on the coarsest level
and then interpolate the solution to obtain the fine-grid fluxes that are needed to advect the saturation.

Although, the basic elements of this approach are similar to existing multiscale methods, there are impor-
tant features that set it apart. To explore these new features and demonstrate the accuracy of the M3 method
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we considered two models of highly heterogeneous permeability fields. In these numerical experiments we
showed that M3 is a truly multilevel method that is designed to use many levels and to enable large total coars-
ening factors. Specifically, we used up to seven levels and coarsening factors up to 64 in each direction. In con-
trast, typical studies consider a two-level approach with a coarsening factor of approximately 10 in each
direction. Moreover, even with this large coarsening factor we obtained good accuracy in the water-cut and
relative error in saturation at the producer wells.

The M3 method uses a robust and efficient multigrid algorithm that naturally incorporates global flow
information into estimates of the coarsening parameters a. When these parameters were computed very accu-
rately only once, at the initial time step, the multiscale solution with many levels in the hierarchy still estimated
the breakthrough time quite well. However, temporal features of multiscale solution tended to drift and be
damped after breakthrough, producing relative errors in saturation of approximately 5–15%. The new method
readily addresses this problem by updating the a’s infrequently throughout the simulation. Specifically, we use
PCG(AMG) iterations with a convergence tolerance er to update of a. We demonstrated that with this mul-
tigrid approach, we achieved the required accuracy in a, even with a weak convergence tolerance. Moreover,
we observed that using more frequent updates, even with this weak convergence tolerance, generated a more
reliable approximation of the fine-scale solution. For example, in the SPE benchmark updating 100 times
(every 0.02 PVI or approximately every 500 time steps) with er ¼ 0:01 reduced the error in producer A to
below 5% throughout the simulation. This level of error, relative to the reference solution, is comparable
to the error in the fine-scale solution. Yet, the cost of these updates is a negligible part of the overall simulation
cost.

In the future, we are interested in treating more general distorted and unstructured polyhedral grids and
well models for three-dimensional reservoirs. Also, further gains in efficiency may result from incorporating
the estimation of the coarsening parameters a directly into the hierarchy of first-order models, possibly by
exploiting a connection to a smoothed aggregation based AMG method.

Acknowledgments

This work was carried out under the auspices of the National Nuclear Security Administration of the US
Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and
the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathemat-
ics Research.

References

[1] J.E. Aarnes, On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in
reservoir simulation, Multiscale Model Simulat. 2 (3) (2004) 421–439.

[2] J.E. Aarnes, V. Kippe, K.-A. Lie, Mixed multiscale finite elements and streamline methods for reservoir simulation of large
geomodels, Adv. Water Resour. 28 (3) (2005) 257–271.
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